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Abstract—The exponential growth of mobile data traffic
demands efficient and scalable forecasting methods to optimize
network performance. Traditional approaches, like training
individual models for each Base Station (BS) are computationally
prohibitive for large-scale production deployments. In this paper,
we propose a scalable Deep Neural Networks (DNN) training
framework for mobile network traffic forecasting that reduces
input redundancy and computational overhead. We minimize
the number of input probes (traffic monitors at Base Stations
(BSs)) by grouping BSs with temporal similarity using K-means
clustering with Dynamic Time Warping (DTW) as the distance
metric. Within each cluster, we train a DNN model, selecting
a subset of BSs as inputs to predict future traffic demand for
all BSs in that cluster. To further optimize input selection, we
leverage the well-known EXplainable Artificial Intelligence (XAI)
technique, LayeR-wise backPropagation (LRP) to identify the
most influential BSs within each cluster. This makes it possible
to reduce the number of required probes while maintaining high
prediction accuracy. To validate our newly proposed framework,
we conduct experiments on two real-world mobile traffic datasets.
Specifically, our approach achieves competitive accuracy while
reducing the total number of input probes by approximately 81%
compared to state-of-the-art predictors.

Index Terms—Spatio-temporal traffic forecasting, cellular
networks, deep learning, clustering, explainable AI.

I. INTRODUCTION

The deployment of 4G and 5G networks has significantly
increased the volume of data generated and consumed by
mobile devices. The Ericsson Mobility Report [1] predicts
that 5G will become the leading mobile access technology by
subscription by 2027. Global 5G adoption is accelerating, with
the number of subscriptions expected to reach 6.3 billion by
2030, accounting for 67% of all mobile subscriptions.

As a consequence of the increased 5G adoption, the volume
of mobile traffic is experiencing an unprecedented surge.
This growth is driven by the proliferation of connected
devices, including smartphones and IoT technologies, and the
increasing popularity of data-intensive applications such as
video streaming, augmented reality, and machine-to-machine
communication. Such exponential growth in traffic presents
unique challenges for Mobile Network Operators (MNOs),
requiring efficient management of network resources and
operations across the entire traffic chain. Traditional methods
often rely on statistical approaches, such as (auto regressive
integrated moving average) ARIMA [2] and history average
(HA) [3]. Statistical models fail to capture the complex spatio-
temporal dependencies and non-linear dynamics of mobile
network traffic.

Deep Neural Networks (DNNs) have emerged as powerful
tools for traffic forecasting due to their ability to model nonlin-
ear relationships and process large-scale data [4]. Techniques
such as Long Short-Term Memory (LSTM) and Convolutional
Neural Networks (CNNs) have demonstrated high accuracy
in predicting traffic patterns. However, legacy DNN-based
approaches require extensive data collection for training, often
relying on telemetry from each individual BS [5]. Traditional
methods that require separate DNN models for each BS are
computationally unfeasible for large-scale deployments. This
creates significant challenges for large-scale deployments, as
maintaining numerous probes (traffic monitor at BS level)
can be prohibitively costly and resource-intensive. These
limitations highlight the need for methods that can reduce
reliance on exhaustive data collection while still maintaining
high forecasting accuracy.

To overcome the above challenges, in this paper we propose
a framework that combines clustering and XAI to optimize
scalability and transparency of training DNNs for mobile traffic
forecasting at scale. The intuition is as follows: our method
is scalable because leverages similarities of traffic profiles of
different BSs identified via clustering. This makes it possible
to train one model per cluster rather than per BS. To solve the
question of “which BSs shall be selected as model inputs”, we
resort to XAI. Our previous study [6] has shown that not all
BSs contribute equally to predictions. We leverage LRP [7]
to identify the most influential BSs for the predictor within
each cluster. This ensures that the model focuses on the critical
inputs that matter most. This optimization not only improves
forecasting accuracy but also enhances trustworthiness, as the
procedure is fully transparent for mobile network operators.

Our contributions are fourfold:
• We employ K-means clustering with DTW as the distance

metric to group BSs with similar temporal traffic, reducing
the reliance on system-wide probes and minimizing input
data requirements.

• Using LRP, we optimize input selection within clusters,
identifying the most relevant BSs for training and further
improving model performance.

• By training cluster-specific models, our approach adapts to
localized traffic patterns, maintaining high accuracy while
significantly lowering data collection and computational
costs.

• We conduct experiments on two real-world datasets,
evaluated with multiple configurations and settings, and



benchmark our results against two baseline models: the
LSTM and the Global DNN model.

The remainder of this paper is organized as follows: In
Section II we provide the reader with background on the main
aspects of this paper and detail our methodology, including data
preprocessing, clustering techniques, input selection strategies
and the models. In Section III we describe the datasets and
present the experimental setup and results, along with a
comparative analysis. In Section IV we review related work on
mobile traffic forecasting and XAI. Finally, in Section V we
conclude the paper and outline directions for future research.

Upon acceptance of this paper, we will make our code
publicly available at: https://git2.networks.imdea.org/wng/
scalable-dnn-xai

II. PRELIMINARIES AND METHODOLOGY

A. Timeseries Forecasting
The objective of DNNs in mobile traffic forecasting is to

predict the traffic volume at time t + 1, given the observed
traffic patterns from prior time steps. G = {G1,G2, . . . ,GT }
represents the sequence of traffic snapshots at time steps T =
{1, 2, . . . , T}. Each traffic snapshot Gt consists of data from
geo-distributed BSs, each BS is mapped to a grid cell in a grid
of size M ×N using a Voronoi-tessellation technique, which
associates each BS with the region it primarily serves [8].

Gt = {g(1)t , g
(2)
t , . . . , g

(P )
t }, (1)

where P = M ×N represents the total number of BSs, and
each g

(p)
t corresponds to the traffic volume at time t located

at p = (m,n).
We define the historical sequence of S past traffic snapshots

up to time t as Ghist = {Gt−S+1,Gt−S+2, . . . ,Gt}, where S
is referred to as the history length, and S ≪ N . The task is to
forecast the traffic volume Ĝt+1 for all grid locations at the
next time step:

Ĝt+1 = F (Ghist), (2)

where F is a generic prediction function. Designing the
DNN model involves synthesizing F , which is trained by
minimizing a loss function Lϕ(Gt+1, Ĝt+1) and updating the
model parameters ϕ. The choice of L can be adapted to the
specific forecasting objective. For evaluation, we employ loss
functions tailored to standard traffic estimation as described in
Section II-C.

To address the scalability challenges of traffic forecasting
in mobile networks, we propose a cluster-based framework
that reduces the number of models and data probes while
maintaining prediction accuracy. Our approach groups BSs
with similar temporal traffic patterns, trains a single model
per cluster, and optimizes input selection to minimize data
collection and computational overhead.

We describe our methodology as follows: In Section II-B we
outline the clustering process using K-means with Dynamic
Time Warping (DTW) to identify groups of BSs with similar
traffic dynamics. In Section II-C we introduce the Cluster-DNN
model used for cluster-based traffic prediction, including the
architecture and input selection strategies.

B. Clustering BSs Using K-means with DTW

In our study, we aim to predict future traffic demand across
a city-scale deployment. We employ clustering to group BSs
with similar temporal traffic patterns. This allows us to train a
single model per cluster, significantly reducing the number of
models required.
K-means clustering [9] is an unsupervised machine learning

algorithm that partitions a dataset into K distinct clusters by
minimizing the within-cluster variance. Given our set of n BS
time series data, X = x1, x2, . . . , xn, the objective function is:

min
Ckk=1K

n∑
i=1

min
k∈1,...,K

d(xi,Ck)
2, (3)

where d(xi,Ck) is the distance between the time series xi

and the cluster centroid Ck.
The choice of K represents a trade-off between granularity

and computational cost. Larger K values create smaller, more
homogeneous clusters, improving prediction accuracy but
requiring more models. Conversely, smaller K values reduce the
number of models but result in larger, heterogeneous clusters,
which may affect accuracy.

For time series data like BS traffic patterns, Euclidean
distance may not adequately capture similarities because it
assumes a point-to-point alignment between corresponding time
steps [10]. This rigid alignment can fail to account for temporal
shifts or varying speeds in traffic patterns, where similar
trends may occur at slightly different times. To overcome this
limitation, we use DTW as the distance metric in K-means
clustering [11]. DTW addresses this limitation by allowing
flexible alignment of time series, stretching or compressing
time axes to minimize the overall distance, effectively handling
temporal misalignment. The use of DTW allows the clustering
process to account for variations in traffic patterns caused
by temporal shifts or changes in usage behavior. We use the
implementation provided by the ts-learn library [12], which
includes a soft-DTW variant for centroid computation.

The DTW distance between two time series, x =
x1, x2, . . . , xT and y = y1, y2, . . . , yT , is defined as:

DTW(x, y) = min
ϕ∈P

 ∑
(i,j)∈ϕ

d(xi, yj)

 , (4)

where P represents all possible warping paths that align
points in x with points in y, and d(xi, yj) is the pointwise
distance between xi and yj .

Training on clustered data improves scalability by reducing
both the number of models and the required input probes
compared to training one model per BS. In a per-BS approach,
each BS requires its own model and extensive data collection,
leading to significant computational overhead and data require-
ments. While our clustered approach still involves training
more models than a single global model, it achieves a balance
by reducing the total number of models and focusing only on
the most relevant probes within each cluster. This allows the
framework to maintain high accuracy by capturing localized



traffic patterns while remaining computationally efficient and
minimizing data requirements compared to the per-BS approach.
By grouping BSs with similar traffic patterns, each model
focuses on capturing patterns specific to its cluster, potentially
enhancing its ability to predict traffic for the BSs in that cluster.
This approach contrasts with training a single general model
for the entire grid, which must account for a diverse range of
traffic behaviors and struggles with capturing localized patterns,
as well as with training individual models for each BS, which
is computationally prohibitive and overlooks shared traffic
characteristics among similar BSs.

C. Cluster-DNN Model for Cluster-Based Traffic Forecasting

To predict traffic within each cluster, we employ a Cluster-
DNN model, based on the DeepCog architecture [13]. This
architecture is applied in two ways: first, by training separate
models for each cluster using a subset of BSs as inputs to
predict traffic for all BSs within the cluster; second, by training
a single model that uses all BSs as inputs and predicts traffic
for all BSs across the entire grid. The cluster-specific models
focus on capturing localized patterns with fewer inputs, while
the grid-wide model serves as a comparative baseline.

1) Model Architecture: The Cluster-DNN model captures the
spatio-temporal dependencies in BS traffic patterns effectively.
The input to the model is a 3D tensor representing historical
traffic data over a spatial grid of BSs. The architecture
includes convolutional layers to extract spatio-temporal features,
followed by dropout layers for regularization and to reduce
overfitting. Fully connected dense layers are employed to model
complex relationships, with the final dense layer producing
predictions for all BSs in the cluster.

For this traffic forecasting problem, we use the Mean
Absolute Error (MAE) as the loss function. The model is
trained with the Adam optimizer at a learning rate of 0.0005 for
20 epochs. Rectified Linear Unit (ReLU) activation functions
are applied to neurons in all layers.

2) Input Selection for Model Training: The Cluster-DNN
model is designed to capture cluster-wide patterns with a limited
number of inputs. For each cluster, we select a subset of BSs
as inputs based on two methods:

• Centroid-Based Selection: This method selects BSs closest to
the cluster centroid as inputs, representing the most central
traffic patterns within the cluster. The centroid is computed
based on the clustering process, making it a natural choice to
represent the average behavior of BSs in the cluster. Compared
to random selection or choosing the geographically central BS,
centroid-based selection is more robust because it inherently
reflects the temporal traffic characteristics that define the cluster.

• LRP-Based Selection: To further optimize input selection, we
employ LRP to identify the most influential BSs for prediction
within each cluster. We first train a preliminary model using
all BSs in the cluster and apply LRP to calculate relevance
scores for each BS. The BSs with the highest relevance scores
are then selected as inputs for subsequent training.

III. EXPERIMENTAL RESULTS

We conduct a comprehensive evaluation of our proposed
framework across various configurations of clusters and input
selections. The performance of our proposed approach is bench-
marked against baseline methods, including LSTM models and
the Global-DNN model, to assess its accuracy and scalability.

A. Datasets

For our experiments, we employ two real-world datasets,
whose characteristics and attributes are described below.

Milan Dataset. The Telecom Italia dataset, made publicly
available through Telecom Italia’s Big Data Challenge, contains
mobile traffic data from two Italian regions, Milan and Trentino,
collected between November 1, 2013, and January 1, 2014 [14].
This dataset includes data from 1,728 BSs aggregated into a
grid of square cells, such as the 10, 000 cells representing
Milan. A Voronoi-tessellation technique is used to associate
BSs with cells [8]. The dataset records SMS, voice calls, and
“Internet activities” at a granularity of 10 minutes. In this work,
we use “Internet activities” as a proxy for mobile traffic volume.

The “Internet activities” data provides detailed records of
mobile internet usage collected through Call Detail Records
(CDRs). A CDR is generated when a user initiates or terminates
an internet connection. Moreover, during ongoing connections,
CDRs are created if the connection exceeds 15 minutes or if the
user transfers more than 5 MB of data. This high-resolution data
offers a comprehensive perspective on internet usage, capturing
both the frequency and volume of data transfers across various
times and locations.

EU Metropolitan Area (EUMA) Dataset. The second dataset
captures traffic volumes generated by popular mobile applica-
tions such as YouTube, Facebook, Netflix, Twitch, WhatsApp,
and others. The data was collected in 2019 from a live LTE
network serving a major metropolitan area in Europe. It
provides service-level traffic volume measurements for over
400 BSs. Similar to the Milan dataset, traffic data is aggregated
in 10-minute intervals and mapped to a uniform grid of 3, 400
cells using the same Voronoi-tessellation methodology.

To ensure comparability between the scenarios, the grid
cells in the Milan and EUMA datasets are standardized to have
identical dimensions of 325× 325 m2.

B. Evaluation Setup

We conduct the evaluation under the following settings:
• Clusters (K): We experiment with

(K = 2, 3, 4, 5, 6, 10, 15, 20), representing different
number of clusters.

• Number of Input BSs (M ): We evaluate mod-
els trained with different numbers of input BSs
(M = 4, 9, 16, 25, 36, 49) per cluster. If a cluster contains
fewer BSs than M , we select the largest perfect square
less than or equal to the number of BSs in the cluster.

• Input Selection Strategies: We compare LRP-based input
selection with centroid-based strategies. In the centroid-
based approach, we select M BSs closest to the cluster
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Fig. 1. Different temporal patterns for K = 4

0 2 4 6 8 10 12 14 16 18 20
BSs c R21x21

0
2
4
6
8

10
12
14
16
18
20

BS
s

r
R 2

1x
21

(a) K = 2

0 2 4 6 8 10 12 14 16 18 20
BSs c R21x21

0
2
4
6
8

10
12
14
16
18
20

BS
s

r
R 2

1x
21

(b) K = 4

0 2 4 6 8 10 12 14 16 18 20
BSs c R21x21

0
2
4
6
8

10
12
14
16
18
20

BS
s

r
R 2

1x
21

(c) K = 10

0 2 4 6 8 10 12 14 16 18 20
BSs c R21x21

0
2
4
6
8

10
12
14
16
18
20

BS
s

r
R 2

1x
21

(d) K = 20

Fig. 2. Clustering temporal traffic of BSs for different numbers of clusters K.

centroid, which represent the average temporal traffic
behavior of the cluster. For the LRP-based approach, we
calculate relevance scores using a preliminary model and
select the M most influential BSs for prediction.

For comparison, we include:
• Cluster-LSTM: For each cluster, we train LSTM models

using centroid-based input selection. Each LSTM model
comprises a single LSTM layer with 50 units and a tanh
activation function, trained over 20 epochs.

• LSTM-PerBS: We train separate LSTM models for each
BS. Each LSTM has a single layer with 50 units and a
tanh activation function, trained for 20 epochs. Since every
BS has its own dedicated model, this method avoids the
need for generalization across BSs, allowing each model
to specialize in the temporal patterns of its respective BS.

• Global-DNN Model: The global model that utilizes all
BSs in the grid as inputs and outputs predictions for all
BSs, serving as our baseline model.

All models are evaluated using the Mean Absolute Error
(MAE) as the error metric. Training and evaluation follow the

standard 80 : 20 split, resulting in test sets of 1780 and 400
samples for the Milan and EUMA datasets, respectively. These
samples correspond to approximately 12 and 3 days of traffic
data, with a temporal resolution of 10 minutes per sample.
All models use the same number of past observations of 3. In
total, we train 1092 models across different configurations and
datasets.

To simplify the terminology used in our evaluation, for the
rest of this paper, we will refer to the LRP-based input selection
approach as LRP-Cluster-DNN and the centroid-based input
selection approach as Centroid-Cluster-DNN.

C. Visualization of Cluster Patterns and Traffic Dynamics

Fig. 1 provides a visualization of the temporal patterns for
BSs grouped into K = 4 clusters. The black curves represent
the time series data of individual BSs within a cluster, while
the red curve denotes the computed cluster centroid with
soft-DTW [15]. The centroid captures the dominant temporal
behavior of the cluster, effectively summarizing the overall
trend and variability of the grouped BSs, despite inherent
fluctuations across individual time series. Fig. 2 illustrates
examples of clustering for different values of K. Different
colors in each figure represent distinct clusters, grouping
BSs with similar temporal traffic patterns. As the number of
clusters K increases, the granularity of the clustering improves,
capturing more localized patterns in the traffic data.

D. Evaluating MAE Across Models and Settings

Fig. 3 provides a detailed comparison of the MAE across
all evaluated models, including LRP-Cluster-DNN, Centroid-
Cluster-DNN, Cluster-LSTM, LSTM-PerBS and the Global-
DNN baseline. For cluster-based models, the MAE is calculated
for each sub-cluster by summing the MAE values of all BSs
within that sub-cluster. These sub-cluster MAE values are then
summed across all sub-clusters at a given K, providing a total
MAE for the entire grid. This ensures that the total MAE
accounts for all BSs across all sub-clusters. For the rest of the
models, the total MAE is computed by summing the MAE
values of all BSs in the grid directly.

As shown in Fig. 3(a), LRP-Cluster-DNN consistently
achieves lowest total MAE within the cluster-based model
category. This improvement in performance is most evident
when fewer input BSs (M ) are used, as LRP effectively
identifies and prioritizes the most influential BSs, ensuring



2 3 4 5 6 10 15 20
K

0

2

4
To

ta
l M

AE
1e4

(a) Maximum of 4 inputs per cluster

2 3 4 5 6 10 15 20
K

0

2

4

To
ta

l M
AE

1e4

(b) Maximum of 16 inputs per cluster

2 3 4 5 6 10 15 20
K

0

2

4

To
ta

l M
AE

1e4

(c) Maximum of 49 inputs per cluster

2 3 4 5 6 10 15 20
K

0

1

2

3

To
ta

l M
AE

1e10

(d) Maximum of 4 inputs per cluster

2 3 4 5 6 10 15 20
K

0

1

2

3

To
ta

l M
AE

1e10

(e) Maximum of 16 inputs per cluster

2 3 4 5 6 10 15 20
K

0

1

2

3

To
ta

l M
AE

1e10

(f) Maximum of 49 inputs per cluster

LRP-Cluster-DNN Centroid-Cluster-DNN Cluster-LSTM Global-DNN LSTM-PerBS

Fig. 3. Comparison of evaluations for different K and M in the Milan (first row) and EUMA (second row) datasets.

optimal prediction accuracy even with limited inputs. When
the number of input BSs (M ) and the number of clusters (K)
are small, Cluster-LSTM performs poorly due to its inability to
effectively model spatial relationships within clusters. LSTM’s
sequential nature limits its effectiveness in learning complex
spatio-temporal patterns, which are better captured by Cluster-
DNN models. The LRP-based model also reduces MAE by
34% compared to the Centroid-Cluster-DNN models when
only 4 inputs are used per cluster. As K and M increase, all
models show improved performance and converge toward the
accuracy of the Global-DNN model, as the increased number
of clusters allows for more localized modeling, and higher
input coverage captures broader dependencies. At higher K
values, Cluster-LSTM outperforms the Global-DNN model
due to its ability to effectively capture temporal dependencies
when clusters are more refined. In this setting, Cluster-LSTM
model benefits from the granularity introduced by higher K,
allowing it to focus on smaller subsets of traffic patterns,
which enhances its accuracy. However, the LRP-Cluster-DNN
model continues to achieve the best performance overall, even
outperforming the Global-DNN model in some cases, with
significantly lower computational and data requirements. This
behavior is consistent across both datasets. For example, in
the Milan dataset (Fig. 3(a) to Fig. 3(c)), as K increases to
20 and M increases to 49, all methods converge, with LRP-
Cluster-DNN outperforming the Global-DNN model. Similarly,
in the EUMA dataset (Fig. 3(e) to Fig. 3(f)), the same trend
is observed.

The LSTM-PerBS model achieves the best performance
overall, as it is trained separately for each BS and directly
models the traffic patterns of individual BSs. However, this

approach is computationally unsustainable for large-scale
deployments, as it requires training and maintaining a separate
model for each BS and collecting data from every BS in the
network. While LSTM-PerBS serves as the upper bound for
model performance, our proposed approaches, particularly LRP-
Cluster-DNN, achieve a competitive balance between accuracy,
scalability, and reduced reliance on input probes. Fig. 4 shows
a prediction example of a BS with K = 2 clusters and M = 2
input BSs per cluster. For cluster-based methods like LRP-
Cluster-DNN and Centroid-Cluster-DNN, the predicted BS is
not among the selected inputs, meaning these models do not
have access to the historical data of the predicted BS itself. Yet
they achieve competitive accuracy with LSTM-PerBS, which
uses the same BS as both input and output.
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Fig. 4. Comparison of prediction accuracy for different models

E. Effect of Cluster Granularity

We analyze the trade-off between cluster granularity (K)
and number of selected inputs (M ) on performance. Fig. 5
shows the percentage of difference in MAE between the LRP-
Cluster-DNN model and the Global-DNN model, normalized
by the MAE of the Global-DNN model. This difference is
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plotted against the fraction of total input probes used across
all sub-clusters for various K values in both datasets. As can
be seen, as the fraction of input BSs increases, relative MAE
decreases, indicating improved model performance compared
to the baseline (Global-DNN model). This improvement is
accompanied by an increase in K, which translates to training
more models.

However, even with lower input fractions, a favorable trade-
off between performance and model complexity is observed.
For instance, in the EUMA dataset with K = 2 and a maximum
of 36 inputs per cluster which translates to using roughly 17%
of total inputs, comparable performance to the baseline is
achieved. Smaller K values yield larger, more heterogeneous
clusters (resulting in higher MAE), while larger K values
improve accuracy at the cost of training more models.

From a computational perspective, for the same configuration,
the Centroid-Cluster-DNN trains in approximately 92.39 s (with
0.52 s inference), incurring a one-time clustering overhead of
10415.90 s (2.90 hours). The LRP-Cluster-DNN, which runs
on the Centroid-Cluster-DNN, requires retraining—roughly
doubling both training and inference times—yet still remains
far more efficient than LSTM-PerBS, which needs 1288.91 s for
training and 62.06 s for inference. Although the Global-DNN
is fastest (23.89 s training, 0.33 s inference), it demands inputs
from all BSs. These trade-offs underscore that our clustering
method, despite its one-time overhead and retraining cost for
LRP-Cluster-DNN, significantly reduces computational and
data requirements, offering a scalable solution for mobile traffic
forecasting. All experiments were conducted on 2 AMD™
EPYC 7543 Processors (2.8 GHz) and 4 Nvidia A100 SX
GPUs.

IV. RELATED WORK

A. Mobile Network Traffic Forecasting

Mobile traffic prediction is commonly approached as a
regression problem where the objective is to forecast future
days/hours/minutes/seconds based on historical data. Various
studies have explored statistical modeling techniques for
cellular network time-series data [16]. However, these methods

often fall short due to their inherent limitations in capturing
non-linear relationships. One strategy for traffic forecasting is
to use data from all BSs as both input and output, treating
the whole network grid as a single entity [17]. This global
approach utilizes the spatio-temporal dependencies of the BSs,
to enhance the prediction performance. Recently, DNN models,
have emerged as the preferred tool for forecasting, surpassing
traditional approaches such as statistical modeling [18]. There
is a vast literature on spatio-temporal traffic forecasting at the
city level [17], [19]–[22]. However, while global approaches
leverage the spatio-temporal dependencies across all BSs, they
often suffer from significant scalability issues. Training a single
model for forecasting the future traffic of all BSs is computa-
tionally expensive and requires extensive data collection, which
introduces high overhead for network providers. Moreover,
such models may fail to adapt effectively to localized traffic
variations, where patterns can differ significantly between
regions or clusters of BSs.

B. XAI in Mobile and Wireless Networks

Explainable AI (XAI) was conceived for computer vision
and natural language processing applications. Model-agnostic
approaches like SHAP [23] and LIME [24] use perturbation
techniques to assign relevance to input features, whereas model-
specific techniques such as Layer-wise Relevance Propagation
(LRP) [7] evaluate relevance by backtracking neuron activations.
These techniques are complemented by visualization tools like
TSViz [25], which aid in understanding model behavior.

XAI is becoming increasingly important in mobile and
wireless networks. Foundational studies [26], [27] emphasize
the necessity of integrating XAI into future 6G networks to im-
prove AI/ML model design and address vulnerabilities, in both
centralized systems and federated learning frameworks [28].
A recent work [29] highlights the limitations of legacy XAI
tools in establishing a strong connection between input data
and model explanations. However, the tool is only applicable
to models for forecasting traffic at the level of individual BSs.

In mobile networking, XAI has applications in physical and
MAC layer design, network security, mobility management,
and localization [30]. Our prior work [6] introduced the
DEEXP framework to identify vulnerabilities in spatio-temporal
traffic forecasting using LRP-based relevance analysis. While
DEEXP focuses on spotting DNN vulnerabilities and testing
model robustness through adversarial attacks, it established the
effectiveness of leveraging XAI to provide actionable insights
into model behavior.

Unlike previous studies, our framework combines XAI-
driven insights with clustering techniques to achieve scalable
and interpretable traffic forecasting. This approach bridges the
gap between explainability and operational scalability, offering
a practical solution for large-scale deployments.

V. CONCLUSION

In this work, we presented a scalable and efficient framework
for mobile traffic forecasting that leverages clustering and
XAI techniques. By integrating LRP into our methodology, we



optimized input selection for the Cluster-DNN model, achieving
competitive accuracy with the Global model, while using fewer
inputs. This approach significantly reduces the computational
and data collection overhead, making it a practical solution for
large-scale cellular networks.

Our results demonstrate that using LRP-based input selection
leads to improved model performance compared to traditional
input selection methods, such as centroid-based selection.
Moreover, the framework achieves comparable accuracy to
models trained on all BSs while requiring fewer inputs. These
findings emphasize the potential of combining clustering
techniques with XAI tools for scalable and interpretable traffic
forecasting. While our work focuses on temporal clustering
using DTW, future enhancements could involve integrating
spatio-temporal distance metrics to improve clustering quality.
In future work, we plan to incorporate a Mixture of Experts
(MoE) framework, where the experts consist of multiple XAI
tools, such as SHapely Additive exPlanations (SHAP), Gradient-
weighted Class Activation Mapping (GC), and LRP. This
approach aims to provide a more comprehensive understanding
of model behavior while dynamically adjusting and enhancing
input selection and model reconfiguration in real-time.
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